Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19026-19038, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569595

RESUMO

Cu2AgBiI6 (CABI) is a promising perovskite-inspired absorber for solar cells due to its direct band gap and high absorption coefficient. However, the nonradiative recombination caused by the high extrinsic trap density limits the performance of CABI-based solar cells. In this work, we employ halide engineering by doping bromide anions (Br-) in CABI thin films, in turn significantly improving the power conversion efficiency (PCE). By introducing Br- in the synthetic route of CABI thin films, we identify the optimum composition as CABI-10Br (with 10% Br at the halide site). The tailored composition appears to reduce the deep trap density as shown by time-resolved photoluminescence and transient absorption spectroscopy characterizations. This leads to a dramatic increase in the lifetime of charge carriers, which therefore improves both the external quantum efficiency and the integrated short-circuit current. The photovoltaic performance shows a significant boost since the PCE under standard 1 sun illumination increases from 1.32 to 1.69% (∼30% relative enhancement). Systematic theoretical and experimental characterizations were employed to investigate the effect of Br- incorporation on the optoelectronic properties of CABI. Our results highlight the importance of mitigating trap states in lead-free perovskite-inspired materials and that Br- incorporation at the halide site is an effective strategy for improving the device performance.

2.
Chem Commun (Camb) ; 59(56): 8616-8625, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395362

RESUMO

Are lead-free perovskite-inspired materials (PIMs) the wise choice for efficient yet sustainable indoor light harvesting? This feature article outlines how wide-bandgap PIMs can provide a positive answer to this compelling question. The wide band gaps can hinder sunlight absorption, in turn limiting the solar cell performance. However, PIMs based on group VA of the periodic table can theoretically lead to an outstanding indoor power conversion efficiency up to 60% when their band gap is ∼2 eV. Yet, the research on PIM-based indoor photovoltaics (IPVs) is still in an early stage with highest indoor device efficiencies up to 10%. This article reviews the recent advancements on PIMs for IPVs and identifies the main limiting factors of device performance, thus suggesting effective strategies to address them. We emphasize the poor operational stability of the IPV devices of PIMs being the key bottleneck for the vast adoption of this technology. We believe that this report can provide a solid scaffolding for further researching this fascinating class of materials, ultimately supporting our vision that, upon extensive advancement of the stability and efficiency, PIMs with wide bandgap will become a contender for the next-generation absorbers for sustainable indoor light harvesting.

3.
Small ; 19(46): e2303575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452442

RESUMO

The perovskite-inspired Cu2 AgBiI6 (CABI) material has been gaining increasing momentum as photovoltaic (PV) absorber due to its low toxicity, intrinsic air stability, direct bandgap, and a high absorption coefficient in the range of 105  cm-1 . However, the power conversion efficiency (PCE) of existing CABI-based PVs is still seriously constrained by the presence of both intrinsic and surface defects. Herein, antimony (III) (Sb3+ ) is introduced into the octahedral lattice sites of the CABI structure, leading to CABI-Sb with larger crystalline domains than CABI. The alloying of Sb3+ with bismuth (III) (Bi3+ ) induces changes in the local structural symmetry that dramatically increase the formation energy of intrinsic defects. Light-intensity dependence and electron impedance spectroscopic studies show reduced trap-assisted recombination in the CABI-Sb PV devices. CABI-Sb solar cells feature a nearly 40% PCE enhancement (from 1.31% to 1.82%) with respect to the CABI devices mainly due to improvement in short-circuit current density. This work will promote future compositional design studies to enhance the intrinsic defect tolerance of next-generation wide-bandgap absorbers for high-performance and stable PVs.

4.
J Phys Chem Lett ; 11(6): 2113-2120, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092272

RESUMO

Recently, lead free all-inorganic double perovskites have revolutionized photovoltaic research, showing promising light emitting efficiency and tunability via modification of inherent structural and chemical properties. Here, we report a combined experimental and theoretical study on the variation of carrier-lattice interaction and optoelectronic properties of Cs2AgIn1-xBixCl6 double perovskite nanocrystals with varying alloying concentrations. Our UV-vis study confirms the parity allowed first direct transition for x ≤ 0.25. Using a careful analysis of Raman spectra assisted with first-principles simulations, we assign the possible three types of active modes to intrinsic atomic vibrations; 2 T2g modes (one for translational motion of "Cs" and other for octahedral breathing), 1 Eg and 1 A1g mode for various stretching of Ag-Cl octahedra. Ab-initio simulation reveals dominant carrier-phonon scattering via Fröhlich mechanism near room temperature, with longitudinal optical phonons being effectively activated around 230 K. We observe a noticeable increase in hole mobility (∼4 times) with small Bi alloying, attributed to valence band (VB) maxima acquiring Bi-s orbital characteristics, thus resulting in a dispersive VB. We believe that our results should help to gain a better understanding of the intrinsic electronic and lattice dynamical properties of these compounds and provide a base toward improving the overall performance of double perovskite nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...